🚗
Car States Estimation
  • AI IMU Dead-Reckoning paper explained
  • Implement Extended Kalman Filter (EKF) algorithms
  • Invariant EKF
  • Task 1. Estimate the orientation of the IMU
  • Task 2. Dead-reckoning based on IMU and GPS data using IEKF
  • All Result Plot
Powered by GitBook
On this page

Implement Extended Kalman Filter (EKF) algorithms

This EKF algorithm use noised IMU (acceleration in x, yaw rate wz) and noised GPS signal to estimate the trajectories (~ 5 meters)

PreviousAI IMU Dead-Reckoning paper explainedNextInvariant EKF

Last updated 2 years ago

Code implement: ekf_gps_imu.py

EKF Algorithm

Result in diferent sequences

EKF algorithms for estimating trajectories
Short sequence
Analyze estimation error of X and Y axis
Long sequence
Analyze estimation error of X and Y axis
Long sequence
Short sequence